RL-TR-96-174
Final Technical Report
November 1996

MULTIPROCESSOR
IMPLEMENTATION OF A
REAL-TIME CELP ALGORITHM

University of Kansas

Glenn Prescott, Hari N. Chakravarthula,
Sinivas Sivaprakasam, and Timouthy Johnson

19970113 101

AFPPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

: ITY INEPECTED
- Rome Laboratory DTIC QUALITY I

Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-96-174 has been reviewed and is approved for publication.

APPROVED: = Qf@ C’/Q/Z o

STEPHEN C. TYLER
Project Engineer

FOR THE COMMANDER:
JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3BB, 525 Brook Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE | oW a5Fevoaores

Pubic reporting burden for this collection of irformation is estimated toaverage 1 howr per respones, including the time for reviewing instructions, searching existing data sources,
gathering and mMaintaining the data needec, and completing and reviewing the collection of Fformation. Send comments regarding this burden estimate or any other aspect of this
colection of inforrnation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorste for Information Operations andReports, 1215 Jefferson
Davis Higrwray, Sulte 1204, Arington, VA 22202-4302, and to the Office of Managemert and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1996 Final Apr 94 - Oct 95

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MULTIPROCESSOR IMPLEMENTATION OF A REAL-TIME CELP C - F30602-94-C-0104

ALGORITHM PE - 62702F

6. AUTHOR(S) E‘i ~ 2219

Glenn Prescott, Hari N. Chakravarthula, WU - PG

Sinivas Sivaprakasam, and Timouthy Johmnson

7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS (ES) 8. PERFORMING ORGANIZATION

Telecommunications and Information Sciences Laboratory REPORT NUMBER

CECASE "

University of Kansas

Lawrence, KS 66045 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Rome Laboratory/C3BB
525 Brooks Road RL-TR-96-174
Rome, NY 13441-4505

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Stephen C. Tyler/C3BB/(315) 330-3618

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
The objective of this effort was to develop the methodology of transferring communica-
tion signal processing algorithms from a single processor (SUN Workstation) to multiple
DSP processors TMS320C40s. The CELP (Code-Excited Linear Prediction) voice compression
algorithm was chosen for real-time implementation of 3 processors. ' The algorithm
operates at an output rate of 4800 bits per second with an input sampling rate of 8000
samples per second. Using efficient parallel processing algorithms (optimized to reduce
the inter-processor communication time overhead) one can implement complicated communi-
cation functions such as the CELP algorithm on more than one processor and achieve
real-time performance. A block diagram description of the CELP algorithm has been
developed using the Signal Processing Worksystem (SPW), a block oriented design tool
from the Alta Group of Cadence to generate optimized code for a VMEbus based network of
TMS320C40 processors. The CELP algorithm is based on the U.S. Federal Standard 1016.
Data transfers between the processors is achieved by using the C40 processors' high speed
communication ports and concurrent multi-channel DMA transfer capability. The approach
frees the CPU of burdensome interprocessor communication functions.

14, SUBJECT TERMS 7 15. NUMBER OF PAGES
' 96
CELP, Digital Signal Processing, SPW 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (Rev. 2-89)
NSN 7540-01-280-5500 Prescribed by ANSI Stdl 22818
208102

Abstract

The purpose of this report is to present the implementation of a real-time CELP
(Code-Excited Linear Prediction) speech compression algorithm on a network of
three TMS320C40 DSP processors. The algorithm operates at an output rate of
4800 bits per second with an input sampling rate of 8000 samples per second. Us-
ing efficient parallel processing algorithms (optimized to reduce the inter-processor
communication time overhead) one can implement complicated communication
functions such as the CELP algorithm on more than one processor and achieve
real-time performance.

A block diagram description of the CELP algorithm has been developed using
the Signal Processing Worksystem (SPW), a block oriented design tool from the
Alta Group of Cadence to generate optimized code for a VMEbus based network
of TMS320C40 processors. The CELP algorithm is based on the U.S. Federal
Standard 1016. Data transfers between the processors is achieved by using the
C40 processors’ high speed communication ports and concurrent multi-channel
DMA transfer capability. This approach frees the CPU of burdensome inter-
processor communication functions. In addition to decreasing CPU execution
time, the use of multiple processors reduces the memory requirements, and thus
a larger code-book can be used.

Our implementation takes about 30 cycles (nearly 20 assembly instructions) for
a single frame transfer (240 samples) between two processors. The entire CELP
encoder takes an estimated 500,000 cycles per frame on the C40 while the decoder
is much less computationally intensive. In this report, we present the various
algorithmic and code-level optimizations used for the real-time implementation of
the CELP algorithm and the resulting performance characteristics. Related issues
such as parallel processing are also discussed.

iii/iv

Contents

1 Introduction

2 Background
2.1 Basic Definitions o« i i e e e e e e e e e e e e e e
2.1.1 Pitch: Basic Definitions

2.1.2 Categorizing the various principles of pitch determination .

3 The CELP Algorithm

3.1 Overview of the CELP algorithms
3.2 Baseline Computational Effort of the CELP Algorithm
3.3 Fast Algorithms oo
3.3.1 Special Codebook designs
3.3.2 Multistage searching
3.3.3 Transform Methods
3.3.4 The Autocorrelation Method
3.3.5 Method using overlapping codebook entries.
3.4 Description of the CELP algorithm used
3.4.1 Synthesis
3.4.2 Analysis.............;
3.4.3 Short-term Predictor oL

3.4.4 Long-term Predictor/Adaptive Code book search

~ ot b

345 Exctation
3.46 Postfiltering
3.4.7 Performance of the CELP coders

4 Optimization Techniques

4.1 Algorithm Optimization
4.2 Code Optimization
4.3 SPW Implementation

5 Multiprox and DSP

5.1 Standard Multiprox
5.2 IPCin Standard Multiprox
53 OurIPCMethods.
5.3.1 The TMS320C40 Processor
5.3.2 Parallel Processing with C40
5.4 Comparison of the Methods

6 Parallel Processing
7 Results

8 Conclusions

8.1 Current trends and outlook for the future.

Chapter 1

Introduction

Coding at low bit rates while still maintaining high quality is of considerable in-
terest in current speech research with potential applications to satellite communi-
cation, cellular-radio communication and secure communication for both military
and commercial applications. A simple digital representation of speech is Pulse
Code Modulation (PCM) [1], which is obtained by bandlimiting and sampling the
speech signal at its Nyquist frequency and representing the amplitudes of the sam-
ples by a finite number of values (quantization). For telephone applications, the
analog speech signal is bandlimited to 4 KHz and sampled at 8 KHz. The resulting
sample a.mp]jtudes are adequately represented with 13 bits/sample. By logarith-
mically compressing the input samples, this number is reduced to 8 bits/sample
without compromising speech quality. This compression is called p-law or A-law
PCM [1] depending on the compression scheme used.

In many applications, such as mobile communications and voice storage ap-
plications, the available channel capacity is limited. Even in applications where
there is no hard limit on the channel capacity, it is economical to find signal
representations that have the least number of bits. The bit rate can be reduced
by representing the sample amplitudes with fewer bits. A coarse quantization

increases the quantization error, since speech samples can take a wide range of

possible values (a large dynamic range). Speech samples, however, exhibit a strong
correlation from sample to sample, and for voiced speech signals, such as vowels,
there is a strong correlation between adjacent periods. Removal of these correla-
tions reduces the dynamic range of the sample amplitudes , allowing more efficient
quantization. Linear Predictive Coding (LPC) [2] is an efficient procedure for re-
moving these correlations. The linear prediction method predicts the current
input sample value based on previously reconstructed values. The difference be-
tween the current value and its predicted value is quantized and transmitted. The
procedure of generating the difference signal and using this signal, or its quantized
version, to produce the reconstructed signal can be described as linear filtering
with filters based on the predictors. The input is filtered through an analysis filter,
and the difference signal forms the excitation for the synthesis filter. Since the
speech signal characteristics vary over time, the prediction is made more efficient
by adjusting the predictors periodically. This procedure is known as adaptive
prediction and is used in 32 kbps adaptive differential PCM (ADPCM) [1].

At lower bit rates only a few bits per sample are available for encoding the
excitation signal, and the key issue in designing coders for these rates is finding bit-
efficient representations. Instead of trying to find a representation that matches
the difference signal, it is more efficient to find an excitation sequence that for the
given synthesis filter produces a signal that is close to the original input signal.
Each sample of the excitation signal affects many samples of reconstructed speech
because of the recursive structure of the synthesis filters. Therefore the choice of
the excitation signal is made by measuring its effect on the reconstructed speech
over more than one sample. In other words, the decision about the best quantized
representation is not made instantaneously but is delayed for an interval that
includes several samples. This approach is called delayed decision coding. Since
this decision depends on the error between the original and reconstructed speech,

it requires synthesis during analysis, and the procedure is generally referred to as

analysis-by-synthesis predictive coding.

Code-excited linear prediction (CELP) coders use another approach to reduce
the number of bits per sample. Here, both the encoder and decoder store a col-
lection of C possible sequences of length L in a codebook. The excitation for
each frame is described completely by the index to an appropriate vector in the
codebook. This index is found by an exhaustive search over all possible codebook
vectors and the selection of the one that produces the smallest error between the
original and reconstructed signals. The computational complexity of the CELP
algorithm is very high and a lot of methods have been thought about to reduce
the number of computations involved and perform the coding real-time. This nec-
cessiates optimization at both the algorithmic and code levels. The CELP algo-
rithm that was developed was implemented real-time on a network of TMS320C40
processors. The features of the C40 such as dedicated parallel communications
ports(commports) and DMA channels allowed us to develop an efficient protocol
for data transfers between processors. A test system was implemented on three
C40 processors. Chapter 2 provides a background on the production of speech and
defines some basic terms associated with speech coding. Chapter 3 provides an
overview of the CELP algorithm and summarizes some fast algorithms. Chapter
4 deals with the system level implementation issues on a network of TMS320C40
processors. Chapter 5 addresses the issues of parallel processing on multiple pro-
cessors. The results obtained are presented in Chapter 6. The conclusions drawn

from this work and pointers to future work in this area are presented in Chapter

7.

Chapter 2

Background

2.1 Basic Definitions

In voiced speech, the vocal chords vibrate in a quasi-periodic way. Speech seg-
ments with voiceless excitation are generated by turbulent air flow at a constriction
or by the release of a closure in the vocal tract. The parameters we have to deter—
mine are the manner of excitation- i.e., the presence of a voiced ezcitation and the
presence of a voiceless ezcitation, and, for the segments of the speech signal where
a voiced ezcitation is present, the rate of vocal cord vibration, which is usually
referred to as pitch determination or fundamental frequency determination.

The pitch, i.e., fundamental frequency, has a key position in the acoustic speech
signal. The prosodic information of an utterance is predominantly determined by
this parameter. The ear is an order of magnitude more sensitive to changes of
fundamental frequency than to changes of other speech signal parameters. The
quality of the vocoder is essentially influenced by the quality and faultlessness of
the pitch measurement. For a number of reasons, the pitch determination is one

of the more difficult tasks in speech analysis. Some of the reasons are outlined

below:

e Speech is a non-stationary process; the momentary position of the vocal

4

tract may change abruptly at any time. This leads to drastic variations in

the temporal structure of the signal, even between subsequent pitch periods.

e For an arbitrary speech signal uttered by an unknown speaker, the funda-

mental frequency can vary over a range of almost four octaves(50 to 800 .

Hz)

e The excitation signal is not always regular. Even under normal conditions,
the glottal waveform exhibits occasional irregularities. In addition, the voice
may temporarily fall into vocal fry or creak, which is a nonpathologic mode of

voice excitation with rather large and irregular intervals between subsequent

glottal pulses.

e Additional problems arise in speech communication systems, where the sig-

nal is often distorted or band limited (for instance, in the telephone channel).

2.1.1 Pitch: Basic Definitions

Pitch can be measured in many ways. Since the speech signal is nonstationary and
time variant, aspects of strategy such as the starting point of measurement, the
length of the measuring interval, the way of averaging, or the operating domain
(time, frequency, lag etc) of an individual algorithm start to influence the results
and may lead to estimates that differ from algorithm to algorithm.

There are three points of view for looking at a speech processing problem: the
production, the signal processing, and the perception points of view. In the actual
case of pitch determination the production point of view is obviously oriented
toward the generation of the excitation signal in the larynx; we will thus have to
start from a time domain representation of the waveform as a train of laryngeal
pulses. If an algorithm or device works in a speech-production oriented way, it
measures individual laryngeal ezcitation cycles or, if some averaging is performed,

it determines the rate of vocal fold vibration. The signal processing point of view

can be characterized in such a way that (quasi-) periodicity is observed in the
signal, wherever that signal comes from, and the task is just to extract the features
that best represent this periodicity, The pertinent terms are fundamental frequency
and fundamental period. If individual cycles are determined, we may speak of pitch
periods. The perception point of view leads to frequency domain representation,
since pitch sensation corresponds to a frequency and not to an average period or
a sequence of periods. This point of view is associated with the original meaning
of the term pitch.

Defining the different representations of pitch, it appears reasonable to pro-
ceed from production to perception. Going in that direction we will start at a
local and detailed representation and arrive at a more global representation in the

case of the perception-oriented view. The basic definitions could thus be as follows:

To (the pitch period) is defined as the elapsed time between two successive
laryngeal pulses. Measurement starts at a well-specified point within the glottal
cycle, preferable at the point of glottal closure or - if the glottis does not close

completely - at the point where the glottal area reaches its minimum.
The corresponding frequency domain definition reads as follows:

Fo is defined as the fundamental frequency of an (approximately) harmonic
pattern in the (short-term) spectral representation of the signal. It depends on the
particular method whether Fj is calculated as the frequency of certain harmonic
divided by the respective harmonic number m (including m=1), as the frequency
difference between adjacent spectral peaks, or as the greatest common divisor of

the frequencies of the individual harmonics.

The perception point of view of the problem leads to a different definition of

pitch. Pitch perception happens in the frequency domain.

F, is defined as the frequency of the sinusoid that evokes the same perceived

pitch (residue pitch, virtual pitch etc) as the complex sound which represents the

input speech signal.

This definition is principally different from the previous ones. Above all, it is
a long-term definition. The pitch perception theories were developed for station-
ary complex sounds and were extended toward short pulse trains with varying
amplitude patterns and constant frequencies but not toward signals with varying
fundamental frequencies.

The algorithms used for determining the pitch are referred to as pitch deter-

mination algorithms, (PDAs).

2.1.2 Categorizing the various principles of pitch deter-
mination

The existing PDA principles can be split up into two gross categories: time domain
PDAs and short-term analysis PDAs.

In any short-term analysis PDA a short-term (or short-time) transformation
is performed in a preprocessor step. The speech signal is split up into a series
of frames as shown in Figure 2.1; an individual frame is obtained by taking a
limited number of consecutive samples of the signal x(n) from the starting point,
n=q-K+1, to the ending point, n=q. The frame length, K, is chosen short enough
so that the parameter(s) to be measured can be assumed approximately constant
within the frame. On the other hand, K must be large enough to guarantee that
the parameter remains measurable. For most short-term analysis PDAs a frame
thus requires two or three complete periods at least. In extreme cases, when Fp

changes abruptly or when the signal is irregular, the contradiction of these two

A principle of short-term analysis
2 T L4 i T

K - Frame Length
1.5¢ Q- Frame Interval |

100 200 300 400 500

Figure 2-1: A principle of short-term analysis

conditions can be a source of error. The frame interval Q, i.e., the distance be-
tween consecutive frames (or its reciprocal, the frame rate), is determined in such
a way that any significant parameter change is documented in the measurements.

The short-term transformation, so to speak, is intended to behave like a con-
cave mirror which focusses all the scattered information on pitch, as far as it is
available within the frame, into one single peak in the spectral domain. This peak
is then determined by a peak detector (as the usual implementation of the basic
extractor in this type of PDA). Hence the output signal of the basic extractor
is a sequence of average pitch estimates. The short-term transform causes the
phase relations between the spectral domain and the original signal to be lost.
At the same time, however, the algorithm loses much of its sensitivity to phase

distortions and signal degradation. Unfortunately, the increased reliability of the

algorithm is accompanied by increased computing effort (which is at least one
order of magnitude higher than for a time domain PDA). Much of this effort goes
into the numeric calculation of the transform. Besides the search for reliability,
the search for fast implementation has therefore been an important issue in the
design of short-term analysis PDAs.

Not all the spectral transforms show the desired focussing effect. Those ones
which do are in some way related to the power spectrum: correlation techniques,
frequency domain techniques, and a least-squares approach. Among the correla-
tion techniques we find the well-known autocorrelation function, which became
successful in pitch determination of band-limited signals when it was combined
with time domain center clipping.

If the signal were strictly periodic, the distance function would take on a
value of zero at d=T,. For the quasi-periodic speech signal there will be a strong
minimum in the PDF at this value of the lag(delay time) d. In contrast to all
the short-term PDAs, where the estimate of Ty or Fj is indicated by a maximum
whose position and value have to be determined, the minimum has an ideal target
value of 0 so that we need only determine its position. For this reason, distance
functions do not require (quasi-) stationarity within the measuring interval; they
can cope with very short frames of one pitch period or even less. This principle
thus represents the only short-term analysis PDA which is able to follow definition.

The frequency domain methods are also split up into two groups. Direct
determination of Fy as the location of the lowest peak in the power spectrum
is unreliable and inaccurate. It is thus preferred to investigate the harmonic
structure of the signal. One way to do this is spectral compression, which computes
the fundamental frequency as the greatest c'ommon divider of all harmonics. The
power spectrum is compressed along the frequencjr axis by a factor of two, three,
etc. and then added to the original power spectrum. This operation gives a peak

at Fy resulting from the coherent additive contribution of the higher harmonics.

Some of these PDAs stem from theories and functional models of pitch perception
in the human ear.

The second frequency domain approach leads back to the time domain. Instead
of transforming the power spectrum itself (which would lead to the autocorrela-
tion function) however, the inverse transform is performed on the logarithmic
power spectrum. This results in the cepstrum, which shows a distinct peak at the
"quefrency” (lag) d=T,.

Finally there is the least-squares (maximum likelihood) approach. This was
originally a mathematical procedure for separating a periodic signal of unknown
period Tp from Gaussian noise within a finite signal. Since the speech signal is not
periodic and the background noise (plus the aperiodic components of the speech
itself) cannot be expected to be Gaussian, the approach has to be modified slightly

in order to work in a PDA.
In summary, short-term analysis PDAs provide a sequence of average pitch
estimates rather than a measurement of individual periods. There are not very

sensitive to phase distortions and to absence of the fundamental harmonic. On

the other hand, computing effort is very high.

10

Chapter 3

The CELP Algorithm

3.1 Overview of the CELP algorithms

The CELP algorithm falls into a general class of coders to which the multi-
pulse linear predictive coding (MPLPC) and regular-pulse linear predictive coding
(RPLPC) algorithms also belong. This class of coders operate on sampled speech
on a frame by frame basis. When the original code excited linear predictive coding
(CELP) algorithm was developed, it was found to provide good speech quality at
intermediate bit rates (4.8-9.6 kb/s). However this speech quality was obtained
at the expense of very high computational complexity, making real-time imple-
mentation on low-cost hardware impossible. To remedy this problem, a variety of
fast procedures are available. This project has made use of a number of fast al-
gorithms for facilitating real-time implementation and the following sections deal
with specific algorithms.

The CELP algorithm operates on sampled speech on a frame by frame basis. A
filter is used to describe the spectral envelope of the speech signal. The coefficients
of the filter are obtained using the linear prediction (LP) technique. They are
quantized so that the same filter can be constructed at both the transmit and

receive ends of the channel. The excitation for the filter is determined using an

11

analysis-by-synthesis procedure. A set of candidate excitation sequences is stored
iﬁ a codebook, and synthetic speech is generated using each of these sequences.
The index of the sequence producing the most accurate speech is then transmitted
to the receive end of the channel.

For the encoding of the excitation signal, it is useful to first compute a tﬁrget
excitation sequence t for the current frame. The target excitation sequence is
defined as the vector which will drive the synthesis LP filter to produce the current-
frame speech signal. At the outset of the determination of a target excitation
sequence, the delay line of the (all-pole) synthesis filter is assumed to contain the
last synthetic speech samples of the previous frame. Thus, the excitation vector
t differs from the residual speech signal produced by a whitening filter using the
same LP coefficients because it compensates for quantization errors which occurred
in previous frames.

The filtering operation of the excitation sequence by the all-pole filter can
be performed by the convolution of the excitation sequence ¢ with the impulse
response of the filter. For a single frame, this convolution can be written as a
matrix multiplication H¢, where H is an N x N lower triangular Toeplitz matrix

containing the impulse response h; of the filter in its first column.

(he O ... 0]
hy ko
[E hy -
ho 0
N T

As will be shown later, it is often advantageous to truncate the impulse re-

sponse after a sufficient number (R) of samples. If z is the zero-input response of

12

the synthesis filter for the current frame, the speech signal s can be written as:
s=Ht+z (3.2)

While the MPLPC algorithm quantizes the target vector ¢ by the sequential
determination of a set of pulse locations and axﬁplitudes, the CELP algorithm
encodes the target vector via a shape-gain vector quantization. The codebook used
in this vector quantization can consist of stochastic or deterministic sequences, or
sequences which were obtained from a training procedure.

The goal is to accurately model the speech signal s, and not the target excita-
tion t. Matching the target excitation directly has been used, but in general, this
will result in a significant degradation in performance. Thus, an exhaustive search
through synthetic speech vectors generated by each of a set of optimally scaled
candidate vectors p(Vz(" is performed. Such an analysis-by-synthesis search pro-
cedure is computationally much more expensive than a search involving a simple
comparison of excitation signals.

The matrix H can be interpreted as a weighting of the z(*) and ¢ vectors in the
computation of the least squares error criterion which evaluates the accuracy of
the synthetic speech signal. In fact, the selection of the best candidate vector is a

shape-gain vector quantization of the target excitation vector using the following

dynamic error criterion:
) = (t — pDeNTHT H(t — p(z) (3.3)

where p() is the optimal scaling factor for the candidate vector z(¥. pt is
defined as:

(i) tTHTHZ(i)

K= SOTET a0 34

13

This expression for the optimal scaling factor u(*) can be substituted into 3.3,
but the resulting elegant error criterion is only of practical value if the quantization
of p) is performed after the search procedure. It is more accurate to use the
quantized value of u(¥) during the search process.

The spectral weighting introduced by the matrix HT H into the vector quan-
tization of the target vector t results in an equal expectation value for the error
over the entire spectrum of the synthetic speech signal. It is known, however,
that audible quantization noise is masked by the formants of the speech signal,
suggesting that more of this quantization noise should be put under the formants.
To diminish the perceived noise signal resulting from the vector quantization pro-
cedure, the relative weighting of the formant regions in the error criterion can
be decreased by deemphasizing the spectrum, here represented by the H matrix.
This can be accomplished by moving the poles of the LP filter inward by a con-
stant factor, usually denoted by -, for which a value of around 0.8 is appropriate.
The weighting is easily implemented by multiplying the filter coefficients of the LP
filter by powers of this factor. Hereafter, we assume that this perceptual weighting
is included in the search procedure.

The H matrix of 3.1 results in an error criterion with a symmetric weighting
matrix HY H. Additional symmetry of the error criterion is beneficial in the
development of fast algorithms. The spectral weighting matrix HZ H becomes a
Toeplitz matrix if the impulse response h;, truncated after R samples, is used
in its entirety for each sample of the excitation vector. In most situations, it is
appropriate to use a value of R less than N, since the perceptual weighting reduces
the effective length of the impulse response. In such cases, HY H becomes a band

matrix (in addition to being symmetric and Toeplitz). The matrix H is now:

14

[h, 0 0 |
hl ho
hr_i1 hg-2
0 haq
H= R (3.5)
. o . .. ko
0o ... hy
0 . . . hpy hp-s
o . .. 0 hr|

Equation 3.3 can still be employed to evaluate the error criterion with this
modified H matrix. The matrix H is still N x N, but the vectors H(t — p()z(9)
are now of length N + R — 1.

The error criterion employing 3.1 is called the covariance approach, while the
modified criterion, which employs 3.5 is called the autocorrelation approach (since
the symmetric Toeplitz HTH contains the autocorrelation of the truncated im-
pulse response in its first column). The autocorrelation error criterion results in
a more equitable weighting of the samples of the excitation vector. The major
advantage of the modification of the error criterion is the symmetry created in
the HT H matrix, which is now a symmetric Toeplitz matrix; and if R < N, a
symmetric Toeplitz band matrix. In contrast, if 3.1 is used in the error criterion,
then the H? H matrix is symmetric (band) matrix.

CELP algorithms are usually applied with a pitch loop, which takes advantage
of the periodicity of the (voiced) speech signal to provide more efficient encod-
ing. Two basic procedures exist: the open and closed pitch loops. In the open
pitch loop, the underlying periodicity of the speech signal is determined from the

autocorrelation function of the residual speech signal. The same long-term corre-

15

lation is then introduced to the synthetic excitation function using a one- or three-
tap pitch loop. In the closed pitch loop, a cross-correlation between the target
excitation and the synthetic excitation of previous frames is used to select the
appropriate delay. The closed pitch loop can be interpreted as a search through a
set of overlapping vectors, which correspond to the recent history of the synthetic
excitation. The search finds that sequence in the recent history of the synthetic
excitation which best matches the target excitation vector for the current speech
frame. Therefore, the closed pitch loop can be seen as shape-gain vector quanti-
zation procedure using an adaptive codebook. In this light, the CELP algorithm
becomes a two-stage shape-gain vector quantization of the target excitation, where
the first stage uses an adaptive codebook and the second stage uses a fixed code-
book (usually of stochastic nature). The analysis-by-synthesis aspect of the closed
pitch loop results in better speech quality. Since the closed loop parameters (gain

and delay) must be determined from a procedure similar to that of the second"

vector quantization stage, its computational cost per candidate vector is compa-
rable. The main difference between the two procedures is that the codebook for
the closed pitch loop is dynamic while the codebook of the second stage is fixed.
The following discussion of fast procedures addresses both the dynamic codebook
of the closed pitch loop and the fixed codebook of the second stage.

It is natural to use a two-stage vector quantization of the target excitation
sequence. In general, when a multiple stage shape-gain vector quantization of
this sequence is used, the error criterion described by 3.3 is applied at each stage.
After the selection of the optimally scaled winning candidate vector z(9) for a
particular quantization stage, the target for the next vector quantization stage
is obtained by subtracting p(9)z(?) from the current target vector. The resulting
vector ¢ - pl)z(9) is quantized in the next stage.

The quantization of the target vector ¢ provides a special challenge because

the error criterion contains the spectral weighting matrix HT H. This weighting

16

makes the search through the codebook computationally more expensive, and
the dynamic character of the HT H matrix prevents one from using some of the
established techniques, such as tree searches, for minimizing the computational
effort in vector quantization. This dynamic character means that the closest
neighbors of a particular candidate vector in the codebook may be different from

frame to frame, eliminating all fast methods that make use of the similarity of

candidate vectors.

3.2 Baseline Computational Effort of the CELP
Algorithm

In this section, a baseline is provided for the computational effqrt to which the
various fast procedures can be compared. the computational method used to ob-
tain this baseline effort is more general than the fast procedures. It consists of
a straightforward evaluation of 3.3, and can be applied to codebooks which are
stochastic, deterministic or trained, and dynamic or fixed in time. The compu-
tational effort required by the various versions of the CELP algorithm will be
evaluated in terms of "operations”. An operation is defined as a multiply, an add
or a subtract, or, whenever possible, a multiply-accumulate. The latter opera-
tion is restricted to successive additions to a single scalar quantity and does not
include the sequential addition of vectors. This count of computational effort is
consistent with t‘he architecture of modern floating-point digital signal processors
devices, which can perform the defined operations in a single instruction cycle.
The evaluation of the cost of 3.3 is facilitated by first multiplying out all
terms. It is seen that the first term of the resulting expression, tT HTHt, is a
constant which is of no consequence during the search, and does not have to be
computed. Equations 3.3 and 3.4 afe both dependent on the cross-correlation

term tTHT Hz®) and the energy term)T HT Hz(®), The evaluation of the error

17

criterion for each candidate vector consists of three parts: the computation of the
cross-correlation term, the computation of the energy term, and the quantization
of ut). The division operation in 3.4 can be eliminated by cross multiplying for
each comparison of the quantization process of u(®). If u(¥) is quantized after the
search procedure, a similar cross multiplication will have to be performed in the
evaluation of 3.3. In both cases, the evaluation of the actual value of the scaling
factor, and in particular the division, can be performed after the best candidate
has been selected from the codebook and is of no significance in figuring the
computational effort. |

The quantization process of the scaling factor u(*) is most efficiently performed
using a binary tree structure. The quantization will then require as many compar-
ison operations as the number of bits assigned to the quantization of the scaling
factor.

Computation of the cross-correlation t¥ HT Hz(!) requires relatively little effort
since the vector HT Ht can be computed first. This leaves only N operations
per candidate vector for the remaining inner product, apart from overhead. For
the covariance criterion, this fast evaluation of the cross-correlation term using
the vector HT Ht can be interpreted as follows. The vector y = Ht represents the
speech signal less the zero-input response of the synthesis filter. The multiplication
of the vector ¢ by the lower triangular Toeplitz matrix H as defined in 3.3 is
equivalent to performing a convolution. Similarly, the multiplication of y by an
upper triangular Toeplitz matrix HT with as its first row an impulse respoﬁse h;
can be interpreted as the convolution of the temporally reversed version of the
vector HTy. This interpretation of the evaluation of the matrix multiplication
HTy resulted in the designation “backward filtering” for this operation.

The energy term must be recomputed for each vector. Performing the full

matrix multiplication in its most straightforward form would require N(N + 1)

operations per candidate vector, but realizing that the H matrices are lower tri-

angular leads to considerable savings. In this case N(N + 3)/2 operations are
required to perform this inner product by first computing Hz(") and then evalu-
ating the inner product. When added to the effort for the cross-correlation term,
this leads to a total of N(IN + 5)/2 operations per frame. Using scalar nota-
tion, the common method to compute the energy and correlation terms is first to
calculate the convolution Hz() (N(N + 1)/2 operations), then to find the inner
product of this vector with itself to get the energy term(N operations), and finally
to find the inner product of the same vector with Ht (N operations) to obtain the
cross-correlation term. This will again require a total of N(N + 5)/2 operations,
but the actual operations performed are somewhat different from those used in
the description of the matrix notation method. This computation effort will serve
as the basis for our comparisons.

For an adaptive codebook of 256 entries, and a fixed stochastic codebook
of 1024 entries, a frame length of 60 samples, and a sampling rate of 8000 Hz,
N(N + 5)/2 operations per frame translates into 333 million operations per sec-
ond. In addition to these calculations, overhead computations will have to be
performed, including the computation of the term HT Ht, and, if optimal perfor-
mance is required, quantization of the scaling factor u(*) inside the search loop. To
put this effort into perspective, the fastest general purpose digital signal process-
ing devices can perform about 40 million operations per second (TMS320C40).

Thus, a significant reduction in computational effort is needed to make real-time

implementations possible.

3.3 Fast Algorithms

This section will discuss the properties of methods which minimize the computa-
tional effort for the CELP algorithms. The algorithms have been classified into

several groups: fast procedures which rely on specially designed codebooks, var-

19

ious multistage search procedures, procedures operating in transform space, the
autocorrelation method, methods which use overlapping codebook entries, and

procedures which perform the energy term calculations off-line.

3.3.1 Special Codebook designs

A very simple but effective method to reduce the computational effort can be
obtained by center clipping the candidate vectors of a stochastic codebook. Cen-
ter clipping results in significant savings in the computational effort if the vector
Hz") is computed by adding the responses due to each of the samples of z(*)
rather than by computing the output vector y) = Hz() one sample at a time
as in conventional filtering operations. Using the former procedure, and skipping
the entire column of H whenever a sample of z(*) is zero will result in a savings
proportional to the number of zeros introduced for the Hz(). However, this col-
umn skipping means that the multiply-accumulate operation must be replaced by
separate multiply and add operations. [3] has used codebooks which have 90-95
% of their entries set to zero. According to [4], a codebook where all samples are
generated from independently identically distributed Gaussian processes performs
marginally better when it is center clipped. For 90% center clipping, the compu-
tational effort will be on average 2.1N + 0.1N? operations per codebook entry.
The center clipped codebook can be further simplified by constraining the nonzero
entries to be either -1 or 1. This provides improved speech quality compared to an
ii.d. Gaussian éodebook. Usage of a sparse codebook provides a simple and effec-
tive way to reduce the computational effort required for the second quantization
stage in CELP algorithms. Contrary to the results for the stochastic codebook,
center clipping of the adaptive codebook reduces the synthetic speech quality
and, therefore, this proceduré is not recommended as a method for reducing the
computational effort.

At higher bit rates, deterministic codebook design has been used to obtain fast

20

algorithms. Here, the excitation sequence is more directly linked to the transmit-
ted index. For example, in the 13.5 kb/s version of the algorithm, the excitation
sequence consists of the bits of the indcx, with the 0 replaced by -1. This version
provides a one bit scalar encoding for each sample, resulting in low error sensitiv-
ity. The high level of correlation of the codebook entries is exploited in the fast
algorithm.

3.3.2 Multistage searching

The spectral weighting of the error criterion of the CELP algorithm contributes
most of the computational effort. Relaxing the spectral weighting can lead to
significantly faster computations, at the expense of performance. Several authors
have proposed to use relaxed spectral weighting in a preselection stage for the
CELP algorithm.

Preselection methods for the candidate vectors which bypass the dynamic char-
acter of the criterion for the selection of the excitation vector were developed in [5],
[6] and [3]. The first two preselect the candidate excitation vectors by performing
a direct (least squares) comparison with the target excitation vector. Thus they
use for preselection the same (non-optimal) error criterion which was used for the
actual search. The full search procedure, including the spectral weighting, is then
performed on a reduced set of candidate vectors. Although the method was per-
formed on the stochastic codebook, it can be used on the adaptive codebook as
well, and given the periodic structure of both the speech and the excitation signal
the preselection process may actually have more merit here. However, no work
is reported on such a procedure. The speech quality of this preselection method
for the stochastic codebook improves by increasing the number of survivors of
the preselection scheme. No information is provided suggesting the number of
survivors required to make the method equivalent in quality to a full search.

In another preselection method, the codebook vectors are filtered off-line through

21

a small set of P filters representing spectral classes (thus limiting this method to
the second quantization stage, where the codebook vectors do not change). Dur-
ing the operation of the coder, the spectrum of the current frame of speech signal
is first classified as belonging to one of the spectral classes. The corresponding
vectors which have been filtered off-line are then compared to the current speech.
The K candidate vectors which perform best under this pre-selection criterion
are then searched using the conventional error criterion. A disadvantage of this
method is that it increases the storage requirements significantly. The speech
domain vectors cannot be overlapped as the stochastic codebook entries can be,
and for a codebook of M candidates, M(P + 1)N words of storage are required.
This number can be lowered slightly if the candidate vectors are overlapped. The
energy terms for the preselection stages can be stored. Then, the total number
of operations for this method is MN + KN(N + 5)/2 for each codebook search.
For a stochastic codebook with 1024 entries a preselection to a subset of only 30
candidates using 4 spectral classes maintains the original quality.

Center clipping of the codebook does not reduce the computational effort of
the preselection in the two algorithms discussed above. Checking for zero samples
requires similar effort to that of the computation in this case. The effort required
for the final spectral-weighted search over the selected set is reduced by center-
clipping but this will not result in a dramatic decrease in overall computational
effort.

The conventional two-stage vector quantization procedure (adaptive and stochas-
tic codebook) can be extended to include multiple stochastic codebook quantiza-
tion stages. At constant frame size this will reduce the computational effort dra-
matically. In general, replacing single stage searches with multiple stage searches
results in less efﬁcient encoding of a signal. Thus, speech quality should be care-
fully monitored when implementing this type of procedure. An advantage of the

multistage procedures is that they do not put restrictions on the codebook design,

22

allowing training of the codebooks.

3.3.3 Transform Methods

The above methods modify the numerical results of the CELP algorithm. Mod-
ification of the codebooks may lead to improved speech quality, but nonoptimal
searches throughout the codebook at best maintain the existing speech quality.
There are several procedures which reduce the complexity of the algorithm without
affecting its numerical results. Let us first look into the Singular Value Decompo-

sition procedure. For this purpose we can write the error criterion as follows:

e = (y — WO HOY(y — O Ha?) (3.6)

A singular value decomposition can now be performed on the H matrix such
that Hz®) = UDVz®), where U and V are unitary matrices and D is diagonal.

Thus 3.6 can be rewritten as:

€= (UTy — pO DV (UTy — p DV @) (3.7)

where the unitary property of U was used. If the statistical distribution of the
samples of z(*) is independent, identical, and Gaussian, then so is that of Vz(¥)
(since V is unitary). Given this we can perform a search using the following error

criterion:

e = (UTy — pDul) (UTy — ¥ Dul?) (3.8)
where u are the vectors of the stochastic codebook, which represent the transform-

23

domain excitation vectors. The expression for the optimal scaling factor p(*) is

3.8 and 3.9 can be combined if the factor u*) is quantized after the search
procedure, but it is advantageous to quantize 3.9 before the evaluation of the
error criterion 3.8. When the best candidate vector u) in the transform domain
has been found, the actual candidate vector can be obtained from z() = VTx(9),
As before the bulk of the computation is contained in the evaluation of the energy
term w()T D%y and the cross-correlation term y?UDu. The minimal number of
operations required is 3N (compute Du and complete the inner product with
itself, and then evaluate its inner product with UTy).

By modifying the notation, the singular value decomposition method can be
described as an eigenvalue decomposition method. Let us write the error criterion

as a weighted vector quantization of the target excitation vector ¢ as :

e=(t — pOzNTHTH(t — pOz() (3.10)

The eigen value decomposition of the matrix HT H = VITV results in:

e = (Vt — pDuTT(VE — pu) (3.11)

where the optimal scaling factor p(¥ is:

T (i)

0 - ¥y UDv"
K = AT D1gk) (3.9)
24

L0 = t:r(..f’)___:r"(_i) (3.12)
u()TTy(d)

Computation of the energy and cross-correlation terms again requires 3N op-
erations per candidate vector.

The eigenvalue decomposition and SVD methods have as a major disadvantage
the large amount of overhead required to perform the eigenvalue decomposition
or SVD. This can be reduced by using the autocorrelation error criterion and
applying the methods provided in ref f, which take advantage of the symmetry of
the modified HT H matrix.

The eigenvalue decomposition and SVD methods rely on the fact that an
arbitrary unitary transform does not change the character of the codebook. Thus,
the method can be used for i.i.d. gaussian sequences but not for deterministic,
center-clipped or trained codebooks.

Further savings can be obtained by performing the search only in those di-
mension s of the transform domain that contribute to the time domain function.
For vectors of length 40, half of the components of the transform domain can be
eliminated from the search with negligible effect on objective performance. This
is the case because most speech has strong short-term correlation, resulting in a
large range of eigenvalue magnitudes. This in turn means that many components
can be neglected. In fact, that error can be reduced by zeroing those components
which are not optimized. However, the audible performance of the CELP algo-
rithm deteriorates more quickly when zeroing points of the excitation vectors in
the eigen transform domain than from zeroing samples of excitation vectors which
are not transformed. This suggests that the approximation of the excitation func-
tion (after removal of the long-term correlation by the closed pitch loop) by a
sequence of i.i.d. Gaussian samples is not accurate. Some significant structure

is present in the excitation sequence after removal of the pitch, which is more

25

difficult to model in the eigen transform domain, but is at least partly described
by center clipping in the time domain.

Another transform method takes advantage of the Fourier transform. It is
based on the fact that convolution in the time domain becomes multiplication in
the frequency domain. Since this relation does not hold for truncated sequences,
the autocorrelation error criterion must be used to take advantage of the Fourier
transform. The vector length for the transform operation must be N+ R -1
samples. The entries of any fixed codebook can be transformed into the Fourier
domain, including those obtained from a training procedure.

If we denote the discrete Fourier transform of zg) by X ,Ei), h; by Hy, and ¢, by

T, then we obtain for the new error criterion:

k=N+R-1 . X . }
e= S (To—pOXOVH H(T, — p® x5 (3.13)

k=0

where indicates transpose conjugate, and where

= YRt Re((.))fl?)*(f_l;kH;Hk)
’,::(I)V+R—-l th th Hin)

(3.14)

Again, the main terms to be computed are the cross-correlation term and
the energy term. Computation of X,(,i)‘X,(:),H,:Hk, and Re(X,Ei)Tk) requires 2
operations each. taking into account the symmetry of the sequences, we obtain a
total of 3(N + R — 1) operations per candidate. It is likely that the computational
effort for the Fourier transform, like that of the SVD method, can be further
reduced by considering only those dimensions which contribute to the time domain
output.

The transform procedures provide and optimal search through a codebook.

Neither the eigenvalue (and SVD) nor the Fourier transform procedures can be

26

used to compute the closed pitch loop, since the candidate sequences must be
available in the transform domain. More important is the problem of compu-
tational overhead which the methods require. This is high for the eigenvalue
decomposition and SVD methods, but lower for the DFT method where a fast
Fourier transform can be employed if N + R — 1 is chosen conveniently, In addi-
tion, the Fourier transform procedure is capable of dealing with any type of fixed
codebook (including trained codebooks) while the eigenvalue and SVD methods
work for specific codebooks only. However, it is noted that the core computations
of the energy and cross-correlation terms require more effort in the case of the
DFT (3(N + R —1) per candidate). In a typical case, this will be a 50% increase

in the computational effort.

3.3.4 The Autocorrelation Method

The autocorrelation method is an efficient method to compute the energy term.
It makes use of the fact that the sum of the squares of the convolution of two se-
quences equals the cross correlation of the autocorrelation of these two sequences.
For this relationship to hold, the convolution cannot be truncated, requiring, ap-
proximately, the usage of the autocorrelation error criterion. If the energy term
is written in scalar notation, and if advantage is taken of the symmetry of the

autocorrelation functions, it is seen that

) (o) 2k=R—1 (3 o) k=N+R-1 fm=R-1 2
RO o T Z Rk Rk Z Z hm:vk—m =

k=1 k=0 m=0

k=R-1
RPRP +2 Y MR (3.15)

k=1

where it is implicitly assumed that z,, = 0 for m < 0, and where Rﬁh) is the

kth element autocorrelation of h.

27

If the autocorrelation sequences for all the excitation candidates are stored,
the evaluation of the energy term is very fast. The autocorrelation procedure
requires only R operations per candidate vector to compute the energy term;
adding to the N operations for the cross-correlation term results in a total of
N + R + 1 operations per candidate. This is a very small computational effort,
but unlike other procedures it cannot be lowered further by center clipping. The
only overhead is the computation of the autocorrelation function of the impulse
response H;.

The autocorrelation procedure does not put any constraints on the type of
fixed codebook used, and can be applied to trained codebooks. The method im-
plements -an optimal search through the particular codebook. A disadvantage of
the autocorrelation method is its requirement for storage of the first R values of
the autocorrelation sequenceé for all of the codebook entries. This makes this
method useful for a search through a fixed codebook only and leads to an increase
in the storage requirements for such a codebook. The increased storage is particu-
larly significant when compared to overlapping stochastic codebooks. The storage
of the autocorrelation function requires MR storage locations, regardless of the

particular form of the codebook.

3.3.5 Method using overlapping codebook entries

The use of overlapping codebooks provides several advantages. Obviously the
storage requirements are drastically reduced for such codebooks. In addition, the
dependency of the neighboring candidate vectors can be exploited in the derivation
of fast algorithms. Further, since the adaptive codebook is inherently of the
same nature (assuming the pitch is greater than the frame length), any of these
procedures can be api)ﬁed to the adaptive codebook as well. The method can be
extended for the case where the pitch is smaller than the frame length.

On the negative side, an overlapping codebook cannot accommodate a trained

28

set of candidate vectors. and although the discussed fast procedures implement an
optimal search throughout the overlapping stochastic codebook, the dependency
introduced by the overlapping character can negatively influence the performance
of algorithms. With increasing codebook size, fewer shifts are required to maintain
the performance level of a fully independent codebook. The level of overlap (and
thus computational effort) versus performance will require evaluation at the design
stage of the coder. Usually a shift of two samples between adjacent candidate
vectors will be appropriate.

Since the neighboring candidate vectors of overlapping codebooks are related

to each other by shifts and endpoint corrections, it is useful to define the shifting

matrices:
(0010.. 0]
001
Sg=1|. (3.16)
01
0 .00
(000 .. 0]
101 ... |
S=. 1. ... (3.17)
00
0 .10

and the masking matrix I

29

10 . 0
011

L={. . . 10 . (3.18)
0 01
0. .. .0

where the last nonzero element appears in the kth row and column.

A comparison of expressions for the responses for Hz(") and Hz(+1) suggests
a quick method to perform the computation of the energy term for an overlapping
codebook. If the neighboring candidates overlap for all but one samples and we
start with Hz("), we can obtain Hz(*1) by adding the response due to the last

sample of z(+1) and subtracting the response due to the first sample of z(%);

Hz® = S, He® 4 H(I — Iy_1)z0tY) — HI,2(3) (3.19)

where we assume the extended H matrix of 3.5 is used, so that the full re-
sponses are preserved. A shift by one sample requires 2R multiply and 2R add
operations. The autocorrelation error criterion can be computed from the result-
ing vectors of length N + R — 1. Thus, this method requires 2(N + R —1) +4LR
operations for the evaluation of the autocorrelation error criterion, where L is the
number of shifts between adjacent candidate vectors.

For the covariance error criterion the effort required by the previous method
can be reduced by moving backwards through the candidate vectors. In this case
the response due to the new sample needs to be added, but the subtraction can

be removed (it is taken care of by the shift).

30

Hz®) = §,Hz) ¢ H(I)2®) (3.20)

If we add the computations for the inner product, a total of N+2LR operations
is required per candidate vector for the computation of the energy term of the
conventional error criterion. Including the cross-correlation term we obtain a total
of 2N + 2LR.

The endpoint correction procedure can be further accelerated by center clip-
ping the codebook (applicable only to fixed codebooks). The evaluation of the
second term on the right hand side of 3.20 can be eliminated whenever the new
excitation sample J;z(*) vanishes. In this case the energy term is identical to that
of the previous candidate vector with the contribution of the last sample of H z(®
subtracted. The subtraction requires 1 operation. It is also seen that if both
endpoint points are zero, no correction has to be applied, but including this test
will actually increase the computational requirements of the algorithm. For 90 %
sparsity the overall effort is then N + 0.1(N + 2LR) + 0.9 per candidate.

The above procedures are recursions for the vector H z(9), A disadvantage is
that it cannot take advantage of the multiply-accumulate operation of modern
DSP chips. as as result, the speed of the procedure is further enhanced if the
ternary codebook is used. The computational effort is then 2N + LR operations
per candidate.

3.4 Description of the CELP algorithm used

The CELP algorithm used was developed for 4800 bps operation [7]. A basic
block diagram of a CELP coder is shown in Figure 3.1. The algorithm is based
on the work in [8] and [9] and the US Federal Standard 1016. The CELP analysis

consists of three basic functions: 1) short-term linear prediction, 2) long-term

31

Input Speech

(n)

..» Excitation Short-term Long-term Perceptual
: Generator Correlation "1 Correlation Weighting
- Filter Filter Filter ‘
L)
ereesraerasnsernreansaanad Mi.llimi zation P lm

Figure 3-1: Analysis by synthesis adaptive predictive coder

adaptive code book search, and 3) innovation stochastic code book search. CELP
synthesis consists of the corresponding three synthesis functions performed in
reverse order with the optional addition of a fourth function, called a postfilter, to
enhance the output speech. The transmitted parameters are the stochastic code
book index and gain, the adaptive code book index and gain, and 10 line spectral
parameters (LSP).

The speech signal is segmented into a sequence of frames for the evaluation
of the filter that models the envelope of the speech short-time spectrum. The
duration of the speech frame is 30 msec in this work.

For each subframe of the speech frame, the excitation needs to be determined.
Typically, each prediction frame is broken into four excitation subframes. Accord-
ingly, the subframe is 7.5 msec.

The reconstructed speech is produced by filtering the output signal from the
excitation generator through both a long-term predictor synthesis filter and a
short-term predictor synthesis filter. The excitation signal is found by minimizing
the weighted mean-squared error over several samples, where the error signal is
obtained by filtering the difference between the original and reconstructed signals
through a weighting filter. Both short-term and long-term predictors are adapted
over time, the short-term predictor being adapted at a slower rate than the long-

term predictor. The analysis operation in the encoder involves local synthesis

32

|

Hlustration of noise shaping

Spectrum({dB)

Quiintization noise
g Flat

-20

Figure 3-2: Illustration of the use of noise shaping to reduce loudness of coding
noise

of the speech, the description of the analysis procedure completely describes the
decoder.

Minimizing the mean squared error results in a quantization noise that has
the same energy at all the frequencies of the input signal. The hearing system
has only a limited capability to detect noise in the frequency bands in which the
speech signal has high energy. To make use of this effect, the quantization noise
has to be distributed in relation to the speech power over the different frequency
bands. The desired distribution is shown in Figure 3.2. The noise weighting filter
deemphasizes the energy of the error lying near the peak of the formants. The
weighting filter may be defined as

W(z) = % (3.21)

where Hj,. is the short-time correlation filter transfer function and the band-

width expansion factor v is typically 0.8.

33

3.4.1 Synthesis

The CELP synthesizer is used in the receiver and transmitter to generate speech
by a parallel gain-shape excitation of a linear prediction filter. The excitation is
formed using a fixed stochastic code book and an adaptive code book in parallel.
The stochastic code book contains sparse, overlapping, ternary-valued, pseudo-
randomly generated codewords. Both code books are overlapped and can be
represented as linear arrays, where each 60 sample codeword is extracted as a
contiguous block of samples. In the stochastic code book, the codewords overlap
by a shift of -2 (each codeword contains all but two samples of the previous code-
word and two samples). The adaptive code book has a shift of one sample or less
between its codewords. The codewords with shifts of less than one sample are
interpolated and correspond to noninteger pitch delays. The linear prediction fil-
ter’s excitation is formed by adding a stochastic code book vector, given by index
1, and scaled by a gain factor g,;. The adaptive code book is then updated by
this excitation for use in the following subframe. Thus, the adaptive code book
contains a history of past excitation signals. The delay indexes the codeword
containing the best block of excitation from the past for use in the present. The
number of samples back in time in which this vector is located is called the pitch
delay or adaptive code book index. For delays less than the vector length, a full
vector does not exist and the short vector is replicated to the full vector length to
form a codeword. Finally, an adaptive postfilter is added to enhance the synthetic

output speech.

3.4.2 Analysis

The transmitter’s CELP analyzer, contains a repliéa of the receiver’s synthesizer
(except the postfilter) that, in the absence of channel errors, produces speech
identical to that in the receiver. This generated speech, s~ is subtracted from the

original speech signal. The difference signal is perceptually weighted. The search

34

procedure finds the adaptive and stochastic code book indices that minimize the

perceptually weighted error.

3.4.3 Short-term Predictor

The short-term predictor filter models the short-term correlations (spectral enve-

lope) of the speech signal and has the form

1 1
A - I-ovime

(3.22)

where a;, are the short-term predictor coefficients and p is the order of the
filter. The value of p used was 10.

The short-term predictor parameters are determined from the input speech
(forward estimation) via the autocorrelation technique [17]. In this work, 34 bits
are used to encode the 10 predictor coefficients using a 30 ms Hamming window
and 15 Hz bandwidth expansion. The bandwidth expansion replaces the LPC
coefficients a;s with a;y*. This shifts the poles towards the origin of the Z-plane
by the weighting factor 4. This bandwidth expansion of 15 Hz improves speech
quality, is beneficial to LSP quantization [9] and also to fast direct conversion of
predictor coefficients to quantized LSPs [10].

The predictor coefficients are updated every 30 msec. This sudden change
can introduce transients in the reconstructed speech. To reduce these transitions
it is useful to interpolate the short-term predictor parameters. This is done by
converting the LPCs to LSPs (Line Spectral Pairs). The LSPs for the present
frame are linear combinations of the LSPs computed for the previous frame and
the newly computed LSPs for the present frame. -The LSPs are coded using 34
bits.

35

3.4.4 Long-term Predictor/Adaptive Code book search

The long-term predictor filter models the long-term correlations (spectral fine
structure) in the speech signal. It models primarily the periodicity in the excita-
tion signal. It has the form

1 1

P(z) 1- 22{__‘_}()4_’_1)/2 b z-M+k

,g=13,... (3.23)

where M is the delay in samples and b are the long-term prediction coefficients.
The value of M corresponds to the number of samples of a delay in the range from
2.5 to 18 msec . This corresponds to a pitch period for voiced speech segments.
The delay is random for non-voiced speech. The delay range corresponds to a
pitch range from 56 to 400 Hz which covers variation in pitch for a wide variety
of speakers.

In this implementation, the pitch delay ranges from 20 to 147 every odd sub-
frame while even subframes are search and coded within 32 lags relative to the
previous subframe. The delta search greatly reduces computational complexity
while causing no perceivable loss in speech quality. This adaptive code book search
is carried out four times per frame (every 7.5 ms). The search is performed by
closed-loop analysis using modified minimum squared prediction error (MSPE)
criteria of the perceptually weighted error signal. The gain and index are coded
using absolute, non-uniforin, scalar 5 bit quantization as specified in the standard
1016.

The MSPE search criteria is modified to check the match score at submultiples
of the delay to determine if it is within 1/2 dB of the MSPE. The shortest sub-
multiple delay is selected if its match score satisfies our modified criteria. While
maintaining high quality speech, this results in a smooth ”pitch” delay contour

that is crucial to delta coding and the receiver’s smoother output in the presence

36

Adaptive
Codebook
1 Output
A(Z) Speech
Stochastic
Codebook

Figure 3-3: The two codebook CELP synthesizer model

of bit errors.

3.4.5 Excitation

The excitation parameters (codebook vectors) are determined for a frame of sam-
ples such that the (weighted) mean squared error over the same frame is mini-
mized. By using an adaptive codebook representation, the input to the short-term
synthesis filter is a linear combination of both adaptive and fixed codebooks. A
block diagram is shown in Figure 3.3. The codebooks in Figure 3.3 are searched se-
quentially; that is, the adaptive codebook is searched first and then the stochastic
codebook is searched.

The consistency introduced by the adaptive codebook during voiced segments
of the input speech is perceptually important. So the relative adaptive codebook
component is increased in voiced regions and stochastic codebook component is
slightly reduced. This is done after the adaptive codebook has been searched
as explained in the previous section. The efficiency of the adaptive codebook is
determined by computing the cross- correlation of the excitation before and after
pitch prediction. If the efficiency is greater than 0.9, the stochastic codebook
component is amplified only slightly.

The stochastic codebook search is performed by closed-loop analysis using con-

37

ventional minimum squared prediction error criteria of the perceptually weighted
error signal. The code book is overlapped to allow recursive computational sav-
ings. The codebook is 77% sparse (zero-valued entries) and this is also used to
minimize the computations. This codebook has been found to cause no degra-
dation in speech quality relative to other types of codebooks and signiﬁcanﬂy

reduces search computation.

3.4.6 Postfiltering

Postfiltering reduces the perceptual coding noise. The general idea is to emphasize
the spectral peaks in the speech signal predicted by the short-term LPC analysis.
In noise spectral shaping, lowering noise spectral components at certain frequen-
cies can only be achieved at the price of increased noise components at other
frequencies [11]. At low bit rates (4800 bps), the average noise level is quite high.
It will be very difficult to force noise below the masking threshold at all frequen-
cies. So a better idea would be to preserve the formant information by keeping
the noise as low as possible in the formant region. Now the noise will be above the
masking threshold in the valley region. This can be attenuated by using a post-
filter. But this postfilter also attenuates the spectral components in the spectral
valleys. Fortunately, the just noticeable difference (JND) for spectral valleys can
be very high and so attenuating the spectral components in the spectral valleys
introduces only minimal distortion.

[12] uses such a postfilter. For an all-pole LPC synthesis filter 1/[1 — P(z)],
the corresponding postfilter is 1/[1 — P(az)], where 0 < a < 1. This postfilter
reduces the perceived noise level but results in muffling of the speech. This is due
to the low-pass spectral tilt in the response of the filter for voiced speech as shown
in Figure 3.5(?). This spectral tilt is reduced by adding zeros having the same
phase angle as the poles but will smaller radii. This has the effect of subtracting
the responses of two filters, one with both formant peaks and the spectral tilt and

38

the other with only the spectral tilt. The resulting filter transfer function has the

form:

_1-P(z/B)

_I——P(—m’0<ﬂ<a<1' (3.24)

H(z)

Since some amount of muffling was still observed, a first order filter which
provides a slightly high-pass spectral tilt was added. This filter has a transfer
function of [1 — pz~!, where p is typically 0.5. So the complete transfer function
of the postfilter looks like:

H(z) = 1= Pl("_/i)(]il/;)““’_l],o <f<a<l (3.25)

An automatic gain control (AGC) is added to the postfilter to avoid occasional
large gain excursions. The AGC ensures that the filtered speech has roughly the
same power as the unfiltered speech. This is done by estimating the power of the
speech before and after filtering and using the ratio of the two values to scale the
output speech.

Table 3.1 provides a summary of the CELP algorithm used.

3.4.7 Performance of the CELP coders

CELP coders do not exhibit the usual vocoder problems in background noise
because they use a more sophisticated model than the classical vocoder’s pitch
and voicing (eg., LPC-10). Background noise including multiple speakers has
been found to be faithfully reproduced [8]. Speech intelligibility and quality have
been measured using the Diagnostic Acceptability Measure (DAM). [8] reports
the DAM scores of the 4800 bps CELP coder in different environments. It gives

a score of 65 in a quiet environment and 58 in an office environment (the input

39

Table 3.1: 4800 bps CELP characteristics

Property | Spectrum | Adaptive CB | Fized CB |
Update 30 ms 7.5 ms 7.5 ms
Parameters 10 LSPs 1 gain, 1 delay 1 gain, 1 index
(independent) 256 codewords 512 codewords
Analysis Open loop closed loop closed loop
: 10 th order size 60 size 60
autocorrelation | mod MSPE VQ MSPE VQ
30 ms Hamming | weighting =0.8 weighting =0.8
no preemphasis delta search shift by -2
15 Hz BW exp | range: 20 to 147 77 % sparsity
ternary samples
Bits per Frame 34 index: 8+6+8+6, index: 9x4
(3444433333) gain: 5x4 gain: 5x4
Rate 1133.33 bps 1600 bps 1866.67 bps
Miscellaneous | The remaining 200 bps are used as follows: 1 bit per frame for

synchronization, 4 bits per frame for forward error correction
and 1 bit per frame for future expansion

40

speech has a DAM of 84).

41

Chapter 4

Optimization Techniques

For real-time operation, all the operations on one frame need to be performed
within one frame interval (30 msec). This calls for algorithm level and code level
optimizations. The CELP algorithm is computationally complex and intensive

research over the years has lead to real- time implementations.

4.1 Algorithm Optimization

The algorithm optimizations incorporated are:

o Use of two codebooks, adaptive and stochastic. The excitation is determined
for short frames. Since long term prediction used previous excitation signals,
the selected excitation signals and long term coeflicients affect future choices.
So for each frame a few best choices are maintained and in the next frame,

different excitation signals are selected given different initial conditions.

o Overlapped stochastic codebook. Each codeword is 2(M-index) to 2(M-
index)+L-1 , where M is the maximum code book size which is 512 and L
is the code word length which is 60. Codewords are overlapped by shifts of
2 along the code vector.

42

e Codebook sparsity. The codebook is 77% sparse, so the computations for
the zero elements need not be carried out which results in large savings in

the computations.

4.2 Code Optimization

In addition to algorithm optimization, the underlying code also has been opti-
mized. The TI C compiler version 4.6 [15] was used along with the in-built op-
timizer for generating compact code. This optimizer used at level 3 has features
such as simplifying loops, rearranging statements and expressions and allocating
frequently used variables into registers. It also expands calls to small functions
inline and converts array references in loops to incremented pointer form.

Unfortunately the present version of the TI C compiler does not recognize DSP
specific functions like convolution and filtering which can be implemented more
efficiently using circular buffers. Therefore filter routines were hand-coded using
circular buffer implementations [16] which resulted in computational savings. For
example, a compiler generated optimized filter routine that took 10600 cycles to
execute took only 4200 cycles using a circular buffer implementation.

Sometimes only a portion of the code has DSP specific routines like convolution
and the rest of the code has already been optimized by the compiler. In these
cases, the DSP specific routines were inlined into the compiler generated assembly

code.

4.3 SPW Implementation

The encoder and the decoder were implemented as SPW blocks. At present,
these blocks are part of the SPW library. A user can pull down these blocks
and construct a system which can then be run the TMS320C40 processors on the
DBV4x board.

43

Since the encoder and the decoder are usually on the transmitter and receiver
portions of a system (physically separate), the encoder and the decoder were
implemented on different processors. The configuration of the LSI board is such
that the A/D board can be accessed only via processor 1, this processor was used
to buffer the input data and then send the output from the decoder to the speaker.

The blocks for the encoder and the decoder were developed on SPW (the
software tool developed by the Alta Group of Cadence) [14] using the develop-
ment environment available for Custom-Coded Blocks. The following paragraphs
provide some detail on writing these blocks.

During the creation of any Custom-coded block, SPW generates an expression
file with an EXPR extension. This file has sections for include files, include
directories, link options, input variable declarations, output variable declarations,
state declarations (for local and global variables), initialization code, run-time
code and termination code. The input and output variables are filled in by SPW
during the generation of the expression file. The other sections are initially blank
and they need to be filled in by the user. The initialization code for all the blocks
is run once before the actual iterations start. The run-out code is run for every
iteration and the termination code is run when all the iterations are over. The
number of iterations desired is a parameter that can be specified during run-time.

When the user builds a system, SPW generates the code for each of the blocks.
The dsp-shell of SPW then compiles and makes an executable code. This code is
then downloaded onto the DSP processor and run. In the original version of SPW,
the code compiled for the C40 was not able to be linked to the libraries specified
in the link options. So the dsp-shell was changed to accept the link options as a
variable.

The expression file was written in C. This file consists of the top level functions
of the encoder. These functions in turn call other functions and so creates a nest of

function calls. The object files for all these functions are part of a library and these

44

functions get linked when the linker is run. The object files were initially generated
using the Code Generation System (CGS) on SPW. But it was found that the code
generated was not optimal in terms of the usage of circular buffers, loops, etc. So
the functions were hand-written in the C40 assembly language. Then the object
files were created using TI’s assembler and the files thus generated were archived
into a library. This ensured that the code could run real-time while at the same
time remaining within the SPW block-diagram environment. This arrangement
also cut down the development time for the blocks. The usual practice would
be to simulate the algorithm on SPW and then go in for DSP processor specific
assembly language programming. But in the current set-up, one can directly
program in assembly language, link the object file to the library and immediately
run the system from SPW and check the output. This set-up significantly reduced

the algorithm development time.

@

Chapter 5

Multiprox and DSP

There are two objectives of this Chapter which are motivated by the need to build
and simulate real-time systems on a DSP network of processors in a rapid proto-
typing environment. Our choice for the DSP is the TMS320C40 processor which

is customized for DSP operations in a distributed environment.

The first task is to accomplish a reduction in the inter-processor communications
overhead while using Multiprox with the C40. Improvements in speed of the order
of 30 to 40, have been observed with our modifications. With our ipc handling
code, most of the overhead is in the initialization phase of the DSP code and there
are less than 20 assembly level instructions that are executed during each iteration
of the actual run phase. Furthermore, our techniques can be used with buffered
transfers at no additional cost, i.e. transferring say 1000 words takes about a total

of 25 instructions, while a single word transfer still takes 20 instructions.

The second task is to write highly efficient DSP code for the blocks in SPW (Sig-
nal Processing Worksystem, Alta Group). Currently the block codes are general
purpose C program sections. There are a number of possible modifications that

can lead to efficient DSP programs for systems built using SPW.

The rest of this Chapter is organized as follows. In the first Section, an intro-

46

duction to Multiprox and the routine steps followed in running the software is
provided. In Section 2 an outline of the actual interprocessor communication
functions (low level) used by standard Multiprox is provided. The reasons for the
poor efficiency of the algorithms when applied in low complexity systems are also
mentioned. Section 3 details the two alternate algorithms suggested by us while
Section 4 compares the performance of our methods with the standard Multiprox
and single C40 and brings out the advantage of using our techniques. The second

task is discussed in Section 5.

5.1 Standard Multiprox

Multiprox is an optional software product from the Alta Group (formerly Comdisco
Systems Inc.) that works seamlessly with SPW to provide a distributed process-
ing environment. Though several types of processors are supported by Multiprox,
only parallel processing with the C40 will be investigated. The C40 is very well
suited for such applications since it was designed with distributed processing in
mind. One should expect to see a very good utilization of the processors in most
distributed algorithms since the interprocessor communication(ipc) overhead be-
tween C40s can be made very small. However this is not the case with Multiprox
and in many cases opting to run the code in parallel on several C40s can actu-
ally slow down the throughput compared to a single C40. For the class of low to
medium complexity algorithms we observed anywhere from 20 times slower to no
speed up at all. Clearly this is not what the designers of Multiprox had in mind
and it could initially be frustrating. The problem lies with the way Multiprox does
the ipc for the C40 processors. We suggest two alternate techniques for handling
the ipc. Both the methods yield speed-ups (compared to a single C40) that are
unparalleled by any other method.

Standard Multiprox is a multiprocessor code development software that allows

47

the user to run a block oriented system in SPW, on several processors. The
processors used have to be of the same kind. For example one cannot use a C40
along with a SPARC processor. One can put the software in perspective and its
interactions with the other software products of SPW as shown in Figure 1.
Once a block diagram has been created, the user has to launch a Multiprox
editor from the block diagram editor. A partition of the designed system needs to
be speciﬁed. For optimum performance, the partition has to be carefully selected
so that the ipc per iteration is minimized and at the same time the processors are
more or less equally loaded. This requires some practice and many times it also
could be time consuming. Many block diagrams simply cannot be partitioned
so that the code is equally distributed among all the processors. In any case,
once a satisfactory partition has been achieved, the user has to edit the “region
parameters” file for each partition. The file consists of the “processor value” and

“processor type” which target the specific processor (in a multiprocessor environ-

. ment) and the type of the processor. Typically for C40s, the first parameter takes

numbers 1, 2, 3, 4 and so on while the processor type would be C40. The exact
details of this depend on the software that actually interacts with the proces-
sors (mostly designed by the board vendors). After these parameters have been
correctly specified, the user needs to specify an “Architecture Description File”
(ADF for short) which contains the description of the multiprocessor set up and
also specifies exactly which ipc blocks are to be used for interprocessor communi-
cations. After verifying (or creating) the ADF file, the software is ready to create,

compile and run the partitions on the respective processors.

5.2 IPC in Standard Multiprox

Standard Multiprox (abbreviated to S-MPX) inserts an input and an output block

at each connection between partitions. These blocks (which are hidden from the

48

block diagram) are used to specify the exact ipc method.

As an initialization step, S-MPX establishes logical (software) links between pro-
cessors using four functions, ﬁfolInitX(') and fifoConnectX() where X could be
Input or Output. The fifoInit functions are called during the initialization stage.
The functions establish the actual physical connections that exist and also set up
the software or logical links for each signal that runs across a partition. They
also do an initial synchronization by a fairly complicated procedure of exchanging
tokens, the details of which may be found in the CGS/Multiproz Interface Porting
Kit for C40 that is distributed by the Alta Group of Cadence Systems Inc. The
ﬁfoCohnect functions are used to synchronize the processors at the beginning of
the run stage. This level of synchronization assures that all the processors are
actually at the beginning of the run stage. All of these functions are of major
complexity and typically take an order of 10° cycles. The actual ipc occurs via a
call to either fifoRead() or fifoWrite() and is analyzed below.

Assume that processor A has a 32 bit word to transfer to processor B. An autoini-
tialization sequence (see Section 3) of 7 words is first sent to processor B whose
corresponding DMA channel uses these to autoinitialize itself (without any CPU
intervention). After this set of transfers is successful, the DMA receives the data
from A through the pair of connected comm. ports. CPU B then attempts to
send an autoinitialization sequence for the DMA counterpart on A. This involves
transferring another set of 7 words which are used by the DMA of A to autoini-
tialize itself. On top of these, there is also a token exchanged with each set of
transfers. Thus there is a net transfer of 17 words (32 bits each) between the
two processors for each word of data. In addition to the 68 cycles that it takes
to transfer these 17 words, there is a large overhead of function calls and branch
statements. Consequently each 32 bit data transfer operation should take about
150 instruction cycles (each cycle being 40 or 50 nanoseconds). However on an

average, on the order of 600 to 800 cycles are consumed instead. The cause of this

49

extraordinarily large number of cycles is explained below.

When the SPW timing macros are used (SET_TIMER and GET_TIMER macros
defined in cgsio.h), the measured value of the time spent for the ipc. in S-MPX
is always about 140 to 150 cycles. Yet on an average, 600 to 800 cycles are spent
for the ipc functions ! Similar to the uncertainty principle, the act of making
the measurement slows down the processors enough that there is no anomalous
behavior (the increased time spent per iteration is due to the printf statement
in the GET_TIMER macro that needs to write the measured time on the host
SPARCstation). On the other hand if the measured time is written only once in
a while, say whenever it crosses 10000 cycles, then occa.sioﬁa.lly some high time
intervals are recorded. Tables 1, 2 and Figures 2, 3 show these unusual time inter-
vals while executing “mpxmit2.system” (shown in Figure 4) or “mpxfgen0.system”
(shown in Figure 12, also called SYSTEM-1 elsewhere). The number of iterations
and the threshold above which the times are recorded are also listed. The en-

tire simulation time (in cycles) is also a random variable as shown in Table 3 !

50

Unusual Time Intervals in Cycles

mpxmit2.system
7000 iterations

Threshold = 1000

278408, 47664, 46846, 40078, 25818, 27208,
25024, 48810, 26002, 51480, 29138, 28178

mpxmit2.system
7000 iterations

Threshold = 30000

270048, 40174, 40146, 43686, 41470, 50080,

46000, 43716, 45150, 70314, 41794, 41746

mpxmit2.system
25000 iterations

Threshold = 60000

971872, 165424, 70612, 185424

mpxmit2.system
500000 iterations

Threshold = 2000000

2686442, 6321058, 6510172, 2149998,
12825392, 15671034, 12475222, 6544504,

6647518, 6642282

mpxmit2.system
500000 iterations

Threshold = 107

14715414, 17935192, 13144598, 15177082

13901878, 12009398, 13149688

Table 1: Unusually high time intervals for mpxmit2 system

51

Unusual Time Intervals in Cycles

mpxfgen0.system
10000 iterations

Threshold = 10000

279080, 13780, 251650, 51772, 178302

mpxfgen0.system
7000 iterations

Threshold = 30000

267486, 53188, 45456, 2373836, 30876,
117934

mpxfgen0.system
25000 iterations

Threshold = 60000

268300, 313648, 652516, 999202,
1111570, 340144, 359946, 184486,
193048, 766716

mpxfgen0.system
500000 iterations

Threshold = 107

274906, 128640, 177950, 115960,
981606, 120918, 1219390, 281420,

130190

Table 2: Unusually high time intervals for mpxfgen0 system

52

Iterations | Time (cycles) | cycles/iteration
30000 16918044 564
30000 16148050 538
30000 15982120 533
30000 17989946 600
30000 16452756 548
50000 39746014 795

Table 3: mpxmit2 simulation time as a random variable

There is an unavoidable possibility of “deadlock” between the C40 processor and
the corresponding DMA channel, which involves the peripheral bus and the comm
port. The autoinitialization of the DMA occurs without any synchronization with
the comm port. The CPU write operations also proceed with no synchronization.

Consider the following situation (also illustrated in Figure 5).

The DMA of processor A (DMA_A) tries to autoinitialize from the comm port
(this situation occurs immediately after every data transfer). Suppose that the
CPU of A (CPU_A) tries to write the autoinitialization sequence for the DMA of
B (DMA_B). Similarly the CPU of B (CPU.B) tries to write to its comm port.
Such a scenario leads to deadlock and the peripheral bus hangs on both A and B,
and so does CPU_A, CPU_B, DMA_A and DMA B. The problem however seems
to go away after a large number (typically 10°) of cycles. Hence it is technically a
resource starvation problem rather than a deadlock situation. Nevertheless, it is
unclear as to why the problem gets resolved or even if it is the main cause of the
anomalous behavior. A few postings made to the internet newsgroup “comp.dsp”

have elicited interesting suggestions ranging from faulty comm port design of the

C40 to noise on the links.

53

The efficiency of S-MPX ipc goes down even more dramatically if more than one
logical link exists between any two partitions. Granted that in any multiprocessor
algorithm, the overall execution can only proceed as fast as the slowest (most
loaded) processor, the performance of S-MPX when more than link exists is sim-
ply unacceptable in any real-time system. The results listed in Table 4 verify this
statement. The reason for this also seems to be the occurrence of “deadlocks”,
which will happen more frequently because of the increase in the number of ipc.

transfers.

5.3 Our IPC Methods

The key issue is how to handle the ipc so as to achieve an acceptable utilization
from multiple processors and to avoid the problems of S-MPX. For simulation
purposes, if a buffer is provided so that the ipc functions are executed for blocks
of data, there is a significant improvement in the CPU utilization even for S-MPX.
On the C40, the speed of execution can also be affected if one provides a buffer. In
order to achieve a good throughput, the overhead of the ipc should be distributed
over the entire buffer length. In a real time implementation, this is important
because, suppose the ipc transfer of the buffer is done between any two samples
(or iterations) of the system. Unless the A/D can interrupt the transfer process,
samples will be lost at the A/D. Interrupt driven I/O is computationally costly
owing to the latency of the processor, function call overheads, etc. On the C40,
the distribution of the ipc can be readily achieved using the DMA operations. An
efficient ipc protocol was developed and is given in Section 1.3.2. In the following

Section the advantages that the TMS320C40 processor provides are summarized.

5.3.1 The TMS320C40 Processor

The TMS320C40 is highly optimized for parallel processing applications.

54

Some of the advantages of using the TMS320C40 as a parallel processing node

are

e Node speed of about 50 MFLOPS.

e Single cycle (50 nanoseconds) 32 bit floating point multiplier.

o Single cycle (hardware) divide and inverse square root.

e Single cycle floating point multiply and add (parallel operations).

e Single cycle delayed branch loops.

o Six 20 Mbytes/sec comm ports for node to node communications.

e Six bidirectional DMA channels for ipc.

o Highly configurable for parallel processing topologies.

¢ I/0 of 100 Mbytes/sec on Global bus, 100 Mbytes/sec on the
local bus and 120 Mbytes/sec on the six comm ports.

5.3.2 Parallel Processing with C40

Some of the features of the C40 such as dedicated parallel communications ports
(commport) and DMA channels allow us to develop an efficient protocol. Each
commport is bidirectional and can be used to send and receive data simultane-
ously. Port arbitration is done entirely by the C40 hardware and thus it is much
simpler to transfer data in both directions. The total commport transfer rate of
20 MBytes per second allows for a high degree of parallel processing. One ipc
algorithm that can be proposed is based on a polling scheme where the CPU
polls the appropriate DMA control register when it is ready to transmit or receive
data as shown in Figure X. If the previous DMA transfer (to or from the relevant
commport) was completed then the CPU writes or reads from the DMA buffer and
restarts the DMA for the transfer operation. This ‘procedure decouples the CPU
from doing the memory transfers completely and also prevents the peripheral bus
from getting halted. However there are exceptional cases where the appropriate

flags in the DMA control register are not properly set. We observed that the

55

combination of all the four methods (mentioned in Chapter 9 of the C40 manual)
is always OK to use.

The Scalar IPC (SIPC) method is very similar except that it does not rely on the
DMA control register (see Figure 8). In this case, the receiving processor auto-
matically generates an acknowledgement that is transferred to a known memory
location on the transmitting processor. All this handshaking is done by the re-
spective DMAs and the CPU is not bothered at all. When the C40 needs to send

or receive data, it checks the memory location for an acknowledgement.

The major advantage of SIPC is that in systems with feedback between the two
processors, the feedback signal can very easily be piggybacked on the acknowl-
edgement link. As shown in the results the penalty for an extra data transfer is 2

cycles (or 100 nanoseconds) per iteration which is truly negligible.

In most signal processing applications, data transfers between the processors oc-
cur in a deterministic order and the transfers are done periodically. We make
effective use of this simplicity by constructing a linked list of DMA autoinitial-
ization sequences as shown in Figure 9. Each linked list element consists of seven
fields (clarity permits only a couple of relevant ones to be shown). The head and
tail of the linked list are used to signify a halt code which enables any C40 in the
network to halt all the other processors if necessary. The rest of the elements of
the list contain the addresses of the data and direction of data transfer. In Figure
9, the direction field is a 0 if data is transmitted and is a 1 if data is received.
Further simplification can be achieved in systems where data transfer occurs in
one direction only. In that case one can buffer all the data to be transferred in
each iteration and do the transfer operation only once per iteration.

As listed in Table 4, SIPC takes 24 cycles or 120‘0 nanoseconds for transferring
one word (4 bytes). There is a case of “diminishing returns” when one uses

more processors. Since a single word read/write takes about 24 cycles, even in

56

the hypothetical case where each sample (or iteration) takes the same number of
cycles on each C40, the algorithm complexity cannot be less than 24 cycles.

The complex IPC blocks srinivas/cipc_in and srinivas/cipc_out

57

In systems that can withstand delays (eg. those that do not have feedbacks),
all ipc methods benefit to varying extents by the use of buffered transfers. The
basic method is illustrated in Figure 10 for the cases of S-MPX and either of the
methods suggested by us. For FIPC, if the DMA is transferring the contents of
buffer B; then at the same time, the CPU can write to another buffer B,. When B,
becomes full, the CPU can poll the DMA channel’s control registers to determine
if B; was successfully transferred. Then the buffers need to be switched and the
processors can continue. Whereas by switching buffer pointers (which takes a
couple of cycles), our methods can essentially transfer any size buffer in about 24
cycles, there is no advantage of using two buffers and switching them while using
S-MPX. This is because unlike our techniques, S-MPX does not operate the DMA
in parallel with the CPU. Of course we have to assume that the DMA finishes the
previous transfer before the CPU is ready with the new buffer in order to realize
the entire buffer transfer in 24 cycles or less using our methods. In most DSP type
algorithms this will be true since the CPU will do a certain amount of processing
before it is ready with the buffer.

There is also the issue of CPU and DMA conflicts when they try to access the
same resources. When there is only a scalar word (4 bytes) being transferred, the
maximum probability of conflict occurs when the DMA channel is autoinitializing
because it involves 7 word transfers in the unified mode (see the TMS320C40 Man-
ual for more details). Thus it is 7 times more likely to clash with the CPU when
it is in its autoinitialization procedure. On the other hand for buffered transfers,
CPU/DMA conflicts can occur more frequently and depending on the size of the
buffer it might not be as important to consider the effect of the autoinitialization

sequence itself.

One important feature of the C40 that is relevant here is the concurrent operation
of the DMA processor without almost any intervention from the CPU. Thus if the
DMA is transferring the contents of buffer B, then at the same time, the CPU

58

can write to another buffer B,. When B, becomes full, the CPU can poll the
DMA channel’s control registers to determine if B; was successfully transferred.

Then the buffers need to be switched and the processors can continue.

The results of bufferéd transfers in S-MPX is listed in Table 6. The system used
to get the timing results was of high complexity (a few thousand cycles per itera-
tion). Thus running a complicated algorithm on two processors using S-MPX did
produce a speed up of nearly 2.

The blockcodes of the IPC blocks are similar for all the types. The autoini-
tialization sequences of the DMA are first set up for all possible operations of the
particular DMA channel. This is done using the “autoinit” link structure. The
DMA channel index itself is obtained from a connectivity matrix that is included
in the “mytypes.h” include file (see page xx for the details of the mytypes.h). The
values of the different fields of the linked list element are set up. The number of
data words to be transferred depends on the number of signals that are input or
output from the block. CPU accesses are given priority over DMA accesses by
setting the cérresponding DMA channel control register bits.

In SIPC, the control register is also set for a write operation to the comm. port.
Following the write, the DMA channel automatically autoinitializes for receiving
data or acknowledgement. The write operation involves either data to be trans-
ferred (if the processor is the transmitter) or the acknowledgement corresponding
to the data received on the previous transfer if the processor is the receiver. After
the read operation (either data or acknowledgement) the DMA channel halts and
waits for the CPU to restart it. For its part, the transmitting CPU first checks
if the previous transfer has been acknowledged. If so it restarts the DMA for
the next transfer. On the other hand, the receiving CPU checks its OK flag (the
last word of the transferred data buffer). If the flag is set then it reads from the
data buffer and restarts its DMA channel. In this manner the CPU is almost

completely free of involvement in the memory transfers.

59

5.4 Comparison of the Methods

The CPU utilization of a processor, defined as the percentage of time that the
CPU actually executes the user’s program, not including the interprocessor com-
munication (ipc) overhead, is fairly good when Multiprox is used for systems that
are computationally intensive. However simpler systems that take of the order of
a few hundred instruction cycles do not benefit from the use of Multiprox. Since
typically rapid prototyping involves quick (real time) design prototyping which in
many cases would also be reasonably of low complexity (a highly complex system
is simply not suitable for rapid prototyping, at least using limited resources !)
multiprocessor routines have to work with similar low level throughputs, i.e. low
complexity and yet large volume data transferring capability is essential for any

interprocessor communication system.

We compared the performance of all the ipc methods suggested in this Chapter
with that of using a single C40. The system that was chosen for this purpose is
shown in Figure 11. SYSTEM-1 and SYSTEM-2 that were used to obtain the re-
sults in Table 4 are shown in Figures 12 and 13 respectively. The difference in the
two systems was that the number of words transferred per iteration in SYSTEM-
1 was 1 while it was two word transfers per iteration for SYSTEM-2. We also
checked the real time capability of our algorithms against S-MPX and a single
C40 (using CGS). Specifically we modeled the Delta Modulation/Demodul'ation
system using the different ipc algorithms and CGS (on a single C40). The results
are given in Table 5. It is clear that our methods prove advantageous at high data
rates (due to the low complexity of the ipc algorithms).

All the Multiprox algorithms were run on two processors. Also the test for real
time capability used in Table 5 is that the rate of iterations (or rate of sampling)
is the same as the sampling frequency set for the D/A conversion on the first pro-

cessor. If the rate is slower than the sampling frequency, then the system is not real

60

time.

System Method used | IPC | Time
SYSTEM-1 SIPC 2 | 54 sec
SYSTEM-1 | Standard mpx | 2 | 181 sec
SYSTEM-1| Single C40 2 | 99 sec
SYSTEM-2 SIPC 1 54 sec
SYSTEM-2 | Standard mpx | 1 | 84 sec
SYSTEM-2 | Single C40 1 98 sec

I] 52 5 %
N | 51.0 %
[—— AL
I 00 %

I | 53.0 %
I 515 %
505
I (00 %

Table 4: Timing summary of SYSTEM-1 and SYSTEM-2

Tone in | samp.Freq | Method used | IPC | Time | Real-time
7TkHz | 674 kHz SIPC 2 45 sec yes
7kHz | 67.4 kHz | Standard mpx | 2 | 174 sec no
7kHz | 67.4 kHz Single C40 2 99 sec no
3kHz | 29.6 kHz SIPC 2 | 101 sec yes
3kHz | 29.6 kHz | Standard mpx | 2 | 160 sec no
3 kHz | 29.6 kHz Single C40 2 | 101 sec yes
1kHz | 9636 Hz SIPC 2 |311sec| yes
1kHz | 9636 Hz | Standard mpx | 2 | 311 sec yes
1kHz | 9636 Hz Single C40 2 | 311 sec yes

61

Table 5: Timing summary of the system in Figure 11

We also benchmarked buffered S-MPX and CGS on the SPARC on two other
systems that had almost loaded both the processors equally. The results are
presented in Table 6. The systems differed in the computational complexity.
SYSTEM-1 was much more complex than SYSTEM-2. The results given are for

10°® samples. The details of the systems used are not important here and thus are

not given.

SYSTEM Method used Buffer Size | Time in secs
SYSTEM-1| SPARCstation II 66.0
SYSTEM-1 Single C40 35.0
SYSTEM-1 | Multiprox on 2 C40s 1 19.0
SYSTEM-1 | Multiprox on 2 C40s 1000 17.0
SYSTEM-2 | SPARGOstation II 22.0
SYSTEM-2 Single C40 28.0
SYSTEM-2 | Multiprox on 2 C40s 1 32.0
SYSTEM-2 | Multiprox on 2 C40s 1000 17.0

Table 6: Timing summary of SYSTEM-1 and SYSTEM-2

While the SPARCstation was executing the systems, about 90 to 95% of the CPU
was used by the programs. One can deduce that using a large enough buffer with
SPW Multiprox, there is very good processor utilization (if the computations are
sufficiently intensive). However as mentioned earlier, this cannot be used in a real
time system. Also the SPARCstation outperforms the C40 when the complexity
of the algorithm is very low. Typically most of the operations done in SYSTEM-2
were of the logical kind and thus the reduced architecture of the SPARCstation

62

IT processor provides advantages in such cases. However the C40 DSP proces-
sor outperforms the SPARC processor significantly when the algorithm is fairly

complex, involving floating point operations.

63

bt N w b
n N) © o ES wn

Number of Cycles/iteration

-

0.5}

[File Manager }

. Other processor types ;

Exceptional lterations

64

[0} 10 20 30 40 50 60 70 80 90

Figure 2: Abnormal Iterations in the Simulation of “mpxmit2”

x 10° Abnormally large no. cycles in mpxigenO

7 T T L} L T

6- ... -
L O OSSO SOOI SO SOOOOTAOOROPOOOOOOS SO | OO -
o
]
S
3 :
6\4-..... LR R R PR E R LR RETRREL RRPRRRT 1Y PR -
k-]
2
IR SR

1] 10 20 30 40 50 60
Exceptional terations

Figure 3: Abnormal Iterations (2 traces shown) of “mpxfgen0”

ASYNC. TRANSMITTER
Eb-No Ratio n dB 18.0
Number of Samples Per Symbol, Ls 8
CCSK Code Raie 5 to 32
10 Sempling Frequency 9608.8
Date Rete 300.0
Number of sync. bursts per frame (3
Packet Size in levels 288
e {5,

—
=X, sy 3 > —
‘cesk e “-;1—-)- Ao + =
Y N soern > M
- ENCoDER™ N =
A jpai FVE L = orm :
com v i as Rl - X
= Py U !
- ¢

PROCESSOR A

PROCESSOR B

Figure 4: SPW System: “mpxmit2.system”

65

COMM_READ CODE FOR

MM PROC. B
Rl M
to port-out | .
DMA Reads & [peripheral COMM_WRITE
autoinit. — bus COMM
PORT CPU Writes
. * | to port-out
CODE FOR peripheral “ é: DMA Reads
PROC. A bus Y| autoinit.
Figure 5: Deadlock in standard Multiprox
i ports ports ports ports
‘o o 0o o 0 o o o
o !] =}

EPROM 96 Kbytes

Figure 6: Quad C40 Board Layout

66

CPU

ready for <
transfer
Prev. Xfer. Poll Prev. Xfer.
\/ complete \Qﬂ\/ incomplete
CPU
exchanges
Buffer
Y
CPU ~ DMA i
starts 7 starts
DMA i l transfer
W Y

CPU
continues

Figure 7: CPU-DMA Interactions for SIPC

67

DMAi
halts

g

A

Prev. Xfer. Prev. Xfer.

\ complete W incomplete
CPU
exchanges
Buffer

ke
rj/
CPU DMA i DMA i

starts starts A DMA i
DMA i transfer autoinits gets ack.
Y Y

CPU DMA i
continues halts

Figure 8: CPU-DMA Interactions for SIPC

Start of iteration i
[EXIT CODE (/1] BUFFER 1]
| DIRECTION 0 LDIRECTION o1 \l’
List Element 1 List Element 2
[]
[}
End of iteration i
[EXIT CODE (0/1) |- [BUFFER N }_ﬂ
| DIRECTION 1) DIRECTION 0/1
List Element N+2 List Element N+1

Figure 9: Linked List & Operation of DMA

68

Buffered Transfers from CPU 1 to CPU 2 in IPC-1 or IPC-2

CPU
CPU 1/ omm CPU 2

Port
-——_—-" DMA
Transfers

Buffered Transfer from CPU 1 to CPU 2 in S-MPX

CPU
Writes

Comm CPU 2

CPU
Transfers

Figure 10: Use of buffers for SIPC and S-MPX

DELTA MODULATION SYSTEM

~
x(1)
OUTPUT
conr 16ueE] .
Frequency 10 [
I@ AT o DELTA DEMODULATIR
> x .!75 B!Ts wstoe b :
FUNCTION Lo R FERLINY S J LN _1]

BENERATOR -

by Beta =| .998

—I @—-)— @_;P N Integretor “Legkege” Fac!or|
Delta ercen

- A% iep Size” “= ‘Bt Errors

il
1
11
)

PROCESSOR 2 PROCESSOK .

Figure 11: Delta Modulation example

69

- T NDISE
FUNCTIoN GENERATOR |
GENERATOR
prass s.prea f—>x hold
hold
T
R
N 5 St
frog x] t ol
7 Zw P4 S-—' l " PC =2 »
FUNCTION o Semalll mmeviaczm L LRLLBE L i Sor e
BENERATOR Som oeac TS pe &3¢
("8 A1} _,
- atrea > = ,H 0 Jjpt=5—x

PROCESSOR 1 PROCESSOR ¢

Figure 12: SYSTEM-1 with one data transfer used in Table 4

* > rrea NOISE N
FUNCTION GENERATOR
GENERATOR)

Hmmasmenl)l DIES s.freq hilu

hald

— . >= N AN
- = l 1Pc TaiTaizen o=
FUNCTION See ol urTincram - 4
GENERATOR 2 En,c_ﬁz I g

L s_frea i-.

L) -

PROCESSOR |

Figure 13: SYSTEM-2 with two data transfers used in Table 4

70

Chapter 6

Parallel Processing

Some of the features of the C40 such as dedicated parallel communications ports
(commport) and DMA channels allow us to develop an efficient protocol. Each
commport is bidirectional and can be used to send and receive data simultaneously.
Port arbitration is done entirely by the C40 hardware and thus it is much simpler
to transfer data in both directions. The total commport transfer rate of 20 MBytes
per second allows for a high degree of parallel processing.

A test system for the CELP algorithm was implemented using three C40 pro-
cessors as shown in Figure 6-1. Processor 1 handles the analog to digital and
digital to analog conversions. A buffer of of frame of speech samples (size of 240)
is created and transferred to the second processor which then encodes the samples
into 144 bits. The encoded bits are then transferred to a third processor that de-
codes the bits and automatically transfers them (without any CPU intervention)
to processor 1 which then performs the D/A conversion. A large delay (sum of
the encoding and decoding delays) would be introduced if the D/A conversion
required processor 1 to wait for the decoded frame. Instead, a constant delay of
1 frame is introduced between the input and the output of the first processor.
The first output frame of speech then consists of all zeros after which the actual

decoded speech signal is output.

71

All the data transfers are performed by the DMA co-processors. The inter-
processor communication(IPC) algorithm is similar to that outlined in [13] and
shown in Figure 6-2. However since the test system can withstand delays, the use
of buffers provides a more efficient manner of performing the IPC. In particular,
as shown in Figure 6-3, the use of two buffers that the CPU alternately writes
to and the DMA reads from, increases the IPC efficiency tremendously since the
CPU no longer needs to copy the output from one buffer to another before starting
the DMA to transfer the data. This reduces the CPU and DMA dependence to
a large extent since the DMA transfers a buffer while the CPU writes to another
buffer at all times.

Our IPC algorithm was observed to transfer a frame of 240 speech samples
from processor 1 to processor 2 in 32 CPU cycles (40 nanoseconds per cycle).
Thus while the CELP encoder requires nearly 500,000 cycles per frame, only a
negligible 32 cycles are needed for the data transfer between the processors.

One more SPW implementation of the test system is shown in Figure 6-4.
Here instead of using a circular buffer on processor 1, multirate blocks are used
for forming a vector of 240 samples from the input speech from the A/D and for
forming the output speech from the decoder vector output. This eliminates the
use of the impulse trains for timing purposes and consequently the system is more

elegant and needs less computations.

72

weyshs s8] 4130 j1BudNO By} 30 wedbeip ¥o00|g :[°S eunb 4

L
L
Nlvdi
¢ s 35N <] <
N~ 0WNQ0W
! 7 ¢ .-c-l-w-n.! prazy - o) prizn =
<€ [N . - 334400
1Ndina s K —€gg o] pes P € :n_ln\..m fe2 HST 6o e 3 2¢d pes _zu.ﬂu_z < 810
”
888vd 132 svd1 “_ INdNI
/ o1
SX00|Q JdI
Crgt] 38n91 4N0J)
d-d
1 Josseaouy ¢ J0SSad0uy 2 J0SSa004y 1 J40SS@820uyg

73
Figure 6-1

oc. PROC. 3
o PROC. 2 :
B.mzl 4E: —"|ENCODER X" DECODER}-;
size Ack. Ack.
Vector
o BUFFER of size 240

PROC. 1

Figure 6-2: CPU/DMA actions per frame for CELP algorithm

Buffered Transfers between two C40s using 2 buffers

CPU

Writes
CPU1 -/

Comm

—{ CPU2
o L

Transfers

Buffered Transfers between two C40s using a single buffer

CPU

CPU 1

‘Writes

Comm
—-——'-——-—-——— Port CPU 2

DMA
Transfers

Figure 6-3: Use of buffers with the IPC algorithm

74

SAVOQ 8jediiny yiim wayshg 1sa) ¢73) eyt 4o weubeip 10018 ip°g 8unb 4

. e M
- 2ol - 6
MCJCUW DF TINNVHI 1)
> sopoceg ¥ ovs] £Pe £po ' ovs ! E —> xxx V— > m
A0.1J33n b0
22844133 1Ndino o)
0/1
J4N91 INCD
¢ J0SS820uy] J0SS800ud
01331 \NJ L EENRER 2 T3NNUHO
3 sd2 fe2 saposu 24e 24e - E - xxx
[T i AL epaau3 i oF 2 X N
@¥2| 0] ¥uIYIS !
~J eeava 3 B9 LNdNI

2 J0SS800ud [J0SS820ud

75

Chapter 7

Results

The CELP algorithm was implemented as rapidly prototypable blocks that can be
called from the SPW library. Figure 6.1 and Figure 6.2 show the 4800 bps CELP
encoder and decoder as they appear when called into a system. The encoder takes
in speech in the form of a vector of length 240 (which corresponds to a 30 ms frame
of speech sampled at 8 KHz) and outputs the encode vector of length 144 bits.
The decoder on the other hand, takes in the encoded speech in the form of a
length 144 vector and generates 240 samples of synthesized speech. The encoder
and decoder were implemented as disparate blocks to preserve generality of use.
The CELP coder operated successfully in real-time taking about 526,000 cycles
for each frame. Since the time window available is 30 msec and with a processor
cycle time of 40 nsec, the window yields a total of 750,000 available cycles. This
means that the CELP coder operates about 70 % of the total time the system is

run.

76

Pt

/TN
-
T
N
N
0 &
+ .
al O s
LT_: N
)
[QN)
AV
QU]
TN
&
O
)}
Q.
n

Figure 7-1: The CELP 4800 bps Encoder on SPW

77

P | oy

J:Jn@om

ploy

i
X Jspoos(AN c_@wmw(:m

Bisvrd 147

Figure 7-2: The CELP 4800 bps Decoder on SPW
78

Chapter 8

Conclusions

A real-time implementation of a 4800 bps CELP algorithm has been presented.
The algorithm was implemented on a network of TMS320C40 processors. The
encoder and decoder blocks were developed for use from the Signal Processing
Worksystem (SPW) environment. A test system using multirate blocks along with
the CELP encoder and decoder was implemented on three TMS320C40 processors.
The quality of the synthesized speech was found to be greatly influenced by the
noise on the A/D board. When a recorded speech file was sent through the system
and the output played through the SUN audio port, the speech quality was found

to be immensely better.

8.1 Current trends and outlook for the future

The present speech coders being used for digital cellular and PCS applications are
derivatives of the 1016 Federal Standard 4800 bps CELP algorithm. To increase
the quality of speech, the present systems have opted to go in for higher bit-rates.
For example, the IS54 standard uses a form of CELP called the VSELP (Vector-
Sum Excited Linear Prediction) at 7.9 kbps and the IS95 standards propose a
similar speech coder at 7.2 kbps. GSM proposes a RPE-LTP (Residual Pulse

79

Excitation/ long term prediction) coder at 13 kbps. Qualcomm uses a variable
rate vocoder (QCELP) which compresses 64 kbps speech to 8kbps through 1kbps.
Further research is going on to reduce the bit-rate required to encode speech. Re-
cently COMSAT has developed a 1200 bps speech coder. This algorithm is based
on a tenth-order linear prediction analysis, split vector quantization of line spec-
tral frequencies, differential pitch and gain quantization and adaptive postfiltering
[18].

80

Bibliography

[1] Jayant, N. S. and Noll, P., Digital Coding of Waveforms, Prentice-Hall,
Englewood Cliffs, N.J., 1984.

[2] Atal, B.S., Predictive Coding of speech at low bit rates, IEEE Trans. Cormmmn.
COM-30:600-614, 1982.

[3] G. Davidson and A. Gersho, Complexity reduction methods for vector exci-
tation coding, Proc. Int. Conf. Acoust., Speech, Signal Processing, 1986, pp.
2379-2382.

[4] W. B. Kleign, D. J. Krasinski, and R. H. Ketchum, Improved speech quality
and efficient vector quantization in CELP, Proc. Int. Conf. Acoust., Speech,
Signal Processing, 1988, pp. 155-158.

[5] L. A. Hernandez, F. J. Casajus-Quiros, A. R. Figueiras-Vidal and R. Garcia-
Gomez, On the behaviour of reduced complexity code-excited linear prediction
(CELP), Proc. Int. Conf. Acoust., Speech, Signal Processing, 1986, pp. 469-
472.

[6] M. Copperi and D. Sereno, CELP coding for high-quality speech at 8 kbits/s,
Proc. Int. Conf. Acoust., Speech, Signal Processing, 1986, pp. 1685-1688.

[7} Hari Chakravarthula, S.Srinivas, G.Prescott, T.Johnson and Steve Taylor,
Parallel Implementation of the CELP Speech-Compression Algorithm on a

81

network of TMS320C40 DSP processors, International Conference on Signal
Processing Applications and Technology (ICSPAT), Boston, USA, October 95.

[8] Joseph P. Campbell, Jr., Thomas E. Tremain and Vanoy C. Welch, The DoD
4.8 kbps Standard (Proposed Federal Standard 1016), Advances in Speech
Coding, Kluwer Academic Publishers, 1991, Chapter 12, p.121-133.

[9] Joseph P. Campbell, Jr., Thomas E. Tremain and Vanoy C. Welch, An ex-
pandable error-protected 4800 bps CELP Coder, Proc. Int. Conf. Acoust.,
Speech, Signal Processing, 1989, pp. 735-737.

[10] Campbell, J., V. Welch, and T. Tremain, The new 4800 bps Voice Coding
Standard, Proceedings of Military and Government Speech Tech, 1989, pp.
64-70.

[11] B.S. Atal and M.R. Schroeder, Predictive Coding of Speech Signals and
Subjective Error Criteria, Proc. Int. Conf. Acoust., Speech, Signal Processing,
Vol. 66, pp. 1647-1652, Dec 1979.

[12] Chen, J. H. and A. Gersho, Real-Time Vector APC Speech Coding at 4800
bps with Adaptive Postfiltering, Proc. Int. Conf. Acoust., Speech, Signal Pro-
cessing, 1987, pp. 2185-2188.

[13] G. Gupta, S. Srinivas, C. Neophytou, M. Krishnan, T. Johnson and S. Taylor,
Design and Implementation of a Digital Spread Spectrum Wireless Modem
using Rapid Prototyping Concepts, Fifth International Conference on Signal
Processing Applications & Technology (ICSPAT), Dallas,Texas, October '94.

[14] SPW - The DSP Framework, Signal Calculator Signal Flow Simulation,
COMDISCO Systems, Inc., March 1994.

[15] Texas Instruments Inc., TMS320 Floating-Point DSP Optimizing C Compiler
User’s Guide, 1993

82

[16] Texas Instruments Inc., TMS320 User’s Guide, 1993.
[17] Chris Rowden, Speech Processing, McGraw-Hill Book Company, 1991.

(18] Ruth-Ann German, COMSAT’s Home Page on the Web, COMSAT Labora-
tories, URL- http://www.comsat.com

2U.S. GOVERNMENT PRINTING OFFICE: 1996-509-127-47073

83

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and inteiligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

Unusual Time Intervals in Cycles

mpxfgen0.system
10000 iterations

Threshold = 10000

279080, 13780, 251650, 51772, 178302

mpxfgen0.system
7000 iterations

Threshold = 30000

267486, 53188, 45456, 2373836, 30876,
117934

mpxigen0.system
25000 iterations

Threshold = 60000

268300, 313648, 652516, 999202,
1111570, 340144, 359946, 184486,
193048, 766716

mpxfgen0.system
500000 iterations

Threshold = 107

274906, 128640, 177950, 115960,
981606, 120918, 1219390, 281420,
130190

Table 2: Unusually high time intervals for mpxfgen0 system

52

